首页> 外文OA文献 >Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models
【2h】

Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models

机译:贝叶斯非线性重要抽样方案分析   状态空间模型中的参数估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Bayesian estimation of the unknown parameters of state-space (dynamical)systems has received considerable attention over the past decade, with ahandful of powerful algorithms being introduced. In this paper we tackle thetheoretical analysis of the recently proposed {\it nonlinear} population MonteCarlo (NPMC). This is an iterative importance sampling scheme whose keyfeatures, compared to conventional importance samplers, are (i) the approximatecomputation of the importance weights (IWs) assigned to the Monte Carlo samplesand (ii) the nonlinear transformation of these IWs in order to prevent thedegeneracy problem that flaws the performance of conventional importancesamplers. The contribution of the present paper is a rigorous proof ofconvergence of the nonlinear IS (NIS) scheme as the number of Monte Carlosamples, $M$, increases. Our analysis reveals that the NIS approximation errorsconverge to 0 almost surely and with the optimal Monte Carlo rate of$M^{-\frac{1}{2}}$. Moreover, we prove that this is achieved even when the meanestimation error of the IWs remains constant, a property that has been termed{\it exact approximation} in the Markov chain Monte Carlo literature. Weillustrate these theoretical results by means of a computer simulation exampleinvolving the estimation of the parameters of a state-space model typicallyused for target tracking.
机译:在过去的十年中,状态空间(动态)系统的未知参数的贝叶斯估计受到了相当大的关注,其中引入了一些功能强大的算法。在本文中,我们将对最近提出的{\ it非线性}人口蒙特卡洛(NPMC)进行理论分析。这是一种迭代重要性抽样方案,与常规重要性抽样器相比,其关键特征是(i)分配给蒙特卡洛样本的重要性权重(IW)的近似计算,以及(ii)这些IW的非线性变换以防止退化问题这会破坏传统重要性采样器的性能。本文的贡献是非线性IS(NIS)方案收敛性的严格证明,随着蒙特卡洛样本的数量(M $)增加。我们的分析表明,NIS逼近误差几乎可以肯定地收敛到0,并且具有最佳的蒙特卡洛速率$ M ^ {-\ frac {1} {2}} $。此外,我们证明即使在IW的均值误差保持恒定的情况下,也可以实现这一点,这是在马尔可夫链蒙特卡洛文献中被称为“精确逼近”的属性。我们通过一个计算机仿真示例来说明这些理论结果,该示例涉及对通常用于目标跟踪的状态空间模型的参数进行估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号